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Most of the conjectures and open problems related to the global approximation
by Kantorovich operators are solved.

1. INTRODUCTION

In 1973 Berens and Lorentz [4 J proved for the Bernstein polynomials

Bnf(x) = £ f (15..-) (n ) x k(1 - xt- k
k=O n k

(O~x~ 1)

that Ilcp-a(Bnf-f)llc[O.IJ~Kn-a and IILl~(f)IIC(h.l_h)~Kh2a (O<a< 1)1
are equivalent, where cp(x) = x(l - x) and

Ll~(f; x) = f(x - h) - 2f(x) + j(x + h).

A dual result is due to Lorentz and Schumaker [6 J and Ditzian [5], namely,
that IIBnf-flbo.1)~Kn-a and IlcpaLl~(f)IIC(h.l_h)~Kh2a are also
equivalent.

Since in integral metrics the polynomials Bnf cannot be used to approx­
imate the function, Kantorovich suggested the following modification:

n ( .(k+ I)!(n+ I) ) ( 11 )
Knf(x) = 2.. (n + 1) I f(u) du k x k(l - x)n-k.

k=O ·k!(n+ I)

Apart from the saturation case a = 1, the integral analogue of the above
results was not settled until very recently. In [12, 13 J we gave the charac­
terization of II Knf - fIILP(o.,) ~ Kn -a by means of first and second order

I K always denotes a positive constant not necessarily the same at each occurrence.
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differences, and the aim of this article is to answer most of the conjectures
and open problems which arose in this circle of problems.

The saturation case a = 1 was settled by Maier [7, 8] and
Riemenschneider [9], and further equivalent statements were found by
Becker and Nessel [1] (in L I), and Becker et af. [3] (in £P, p> 1). In the
following, II . IIBV+c denotes the sum of the total variation and the supremum
norm, F(x) = g f(t) dt,

Ll~(f; x) = f(x + h) - f(x),

and

Ll:(f; x) = xf(x - (1 - x)h) - f(x) + (1 - x)f(x + xh).

With these notations they proved

THEOREM A [7, I]. For f ELI (0, 1) the following are equivalent:

(i) IIKnf - fIILl(O.I) "'Kn-- 1
; (n = 1,2,... ),

(ii) f is absolutely continuous 2 and rpl' = '1 is of bounded variation on
[0, 1J with 1](0) = ,,(1) = 0;

(iii) IIrpLl~(F)IIBv+c[h.l-hl",Kh
2

(h > 0);

(iv) IILl:(F)IIBv+C[h/(l+h).,/o+h») ",Kh
2

(h > 0).

THEOREM B [3, 9]. If 1 < p < 00 and f E £P(O, 1), then the following
statements are equivalent:

(i) IIKnf-fIILP(O,ll",Kn- ' (n= 1,2,... );

(ii) f has an absolutely continuous derivative I' with (rpl')' E
£P(0,1);

(iii) lI(rpLl~(F»'IILP(h,'-h) ",Kh
2

(h > 0);

(iv) II (.1: (F»' 11u(hf(l+h),l!(1 +h» ",Kh
2

(h >0).

For 0 < a < 1 they stated

Conjecture 1 [1, 2]. If 0 <a < 1 and p = 1, then

(n = 1,2,... ) (1.1 )

is equivalent to

(h > 0).
?

(1.2)

, This naturally means that J coincides a.e. with an absolutely continuous function.
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Conjecture 2 [1]. For 0 < a < 1 and p = 1, (. I.1) is equivalent to
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(h > 0). ( 1.3)

Conjecture 3 [3]. If 0 < a < 1 and I < p < 00, then (Ll) is equivalent to

II(rpa.d~(F»'IILP(h,l_h)~ Kh 2a (h > 0). (1.4)

Conjecture 4 [3]. For 0 < a < 1 and 1 < P < 00, (Ll) and

(h >0) (1.5)

are equivalent.
In (12, 13] we proved

THEOREM C. If 1 ~ P < 00, fEU(O, 1) and 0 < a < 1, then (J.J) is
equivalent to

(h > 0). (1.6)

THEOREM D. If 1 < p < 00, fE U(O, 1) and a = I, then (Ll) is
equivalent to any of the following:

(i) f has an absolutely continuous derivative with rpf" E U(O, 1);

(ii) Ilrp.d~(f)IIu(h.l-h) ~Kh2 (h > 0);

(iii) 11.d~V;;(f)IILP(hZ.l-h2) ~ Kh 2 (h > 0).

Concerning these results the fol1owing questions arise:

Problem 1 [12, 13]. Can we drop the second term In (1.6); i.e., for
1~ P < 00 and 0 < a < 1 is (I.1) equivalent to

(h > O)?

Problem 2 [12,13]. For 1 ~ P < 00 and 0 < a < 1 is (Ll) equivalent to

(h > O)? (1.7)

On the positive real line the analogue of the Bernstein operator is the so­
cal1ed Szasz-Mirakjan operator, the integral-modification of which is

OJ (k+l)/n ( )k

S:f(x) = I. (n f feu) dU) e- nx~
k=O -kin k.

For these we proved in (11, 13]

(x ~ 0).
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THEOREM E. If 1:< p < oo,fE U(O, 00) and 0 < a < 1, then

is equivalent to

II S:f - fllu(o.oo):< Kn- a (n= 1,2'00') ( 1.8)

II ,1 Lr;;(f)lluCh'.oc) + h
a II ,1 ~(f)IILP(o.oo) :< Kh

Za

where QJI(X) = X.

(h > 0), (1.9 )

THEOREM F. If 1 < p < 00, fE U(O, 00) and a = 1, then (1.8) is
equivalent to any of the following conditions:

(i) f has an absolutely continuous derivative with QJJ" E U(O, 00);

(ii) 11·(f(·)-2f(- +h)+f(· +2h))IIu(o.oc):<Kh z (h >0);

(iii) 1I,1~~(f)IIuCh'.oo):< Khz (h > 0).

Let us note that for p = 1 the analogue of Theorem A holds just as well for
S: as can be seen from the considerations of [Ill.

For the operator S: we raised two problems:

Problem 3 [11,13]. Can we replace (1.9) in TheoremE by

(h > O)? (1.10)

Problem 4 [11,13]. Can we replace (1.9) in Theorem E by

(h>O)? (1.11)

Now we answer the above conjectures and problems:

THEOREM 1. If P = I, then the answer to Problems 1 and 3 is positive.

THEOREM 2. Conjectures 1-4 are false and also the answer to Problems
2 and 4 is negative.

Thus, the only undecided questions are Problems 1 and 3 in the case
1 < p < 00.

3

Remarks 1. We shall prove that the answer to Conjectures 1 and 3 as
well as to Problems 2 and 4 is negative for every 0 < a < 1 and p ~ 1.
However, in the case of Conjectures 2 and 4 the proof is considerably
simplified if we assume a <!, so we shall disprove these conjectures only for
a <!. On the other hand, our opinion is that although the differences ,1: are
interesting, they are only of secondary importance, and Conjectures 2 and 4
are rather crude compared with Conjectures 1 or 3 (see the proofs below).

, Note added in proof The answer to Problems I and 3 is positive for I < p < 00. as well.
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2. We shall show that conditions (1.2), (1.4), (1.7), and (1.11) are not
sufficient for (1.1) and (1.8), respectively. On the other hand, neither are
they necessary as will be indicated at the end of the proof. Thus, in the
nonoptimal case 0 < a < 1 the only suitable characterizing second difference
seems to be Lf~y';W(I; x).

2. PROOF OF THEOREM 1

We have to prove that if qI(x) = x or qI(x) = x(1 - x), then

(2.1 )

implies

(2.2)

where b(h) = 00 if qI(x) = x, and b(h) = 1 - h2 if qI(x) = x(1 - x).
First let us consider the case qI(x) = x which corresponds to the

Szasz-Kantorovich operator. Let

1 .h

fh(X) = 2h .I -h f(x + t) dt.

For this we have

1 .h

fh(X) - f(x) = 2h L
h

(I(x + t) - f(x» dt

IX .h/~
= 2h.l

o
(I(x + u IX) - 2f(x) + f(x - u IX» du,

and if we assume (2.1), we have

(2.3)
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This yields for U ~ h,
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I
1 .2h 2h I

2h .1
0

(f(u - h + t) dt - t feu - h + t) dt

= l.eX:(fh(X) - f(x» dx I~ Kh Cl
,

i.e.,

where

Xh(t) = t/2h

= t/2h - 1

if 0 ~ t < h,

if h ~ t ~ 2h.
(2.4 )

Now
Xh(t) - iXh/2(t) - 4xh/2(t - h) = i

=-1

if h/2 ~ t < h,

if h ~ t < 3h/2,

and we obtain from the previous estimate

1(-hI2 f(t) dt - (+hI2 f(t) dt'

~ If' feu - h + t) 2Xh(t) dt I
+ I{X: feu - h + t) X h/2(t) dt I

+ [{XJf(U-h+t)XhnCt-h)dti ~KhCl;

i.e., with 2h instead of h/2,

(x ~ 3h). (2.5)

For arbitrary a ~ 0 we obtain from (2.3) and (2.5)

.6h +aI If(x) - f(x + 2h)1 dx
·3h+a

.6h+a .6h+a
~ J If(x) - fh(x)l dx +J If(x + 2h) - fh(X + 2h)1 dx

3h+a 3h-t-a
.6h+a

+ I lfh(x) - fh(X + 2h)1 dx ~ Kh Cl
·3h+a
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with a K independent of a. This yields for b ~ 0
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.2h+b .2h+bI If(x) - f(x + h/2)1 dx ~ Kh'\ I If(x + h/2) - f(x + h)1 dx ~ Kho,
·h+b ·h+b

and adding these two inequalities we obtain

.2h +b
, ff(x) - f(x + h)1 dx ~ Kho

-h+b

and together with this also

(b ~ 0),

.3hI If(x) - f(x + h)1 dx ~ Kho.
. h

Let

w(l5)= sup Iff(·)-f(·+h)IIL'(h.oo)'
O<h<.h

By (2.3) and (2.6)

.C If(x) - f(x + h)1 dx

.3h .00

~ t ff(x) - f(x + h)1 dx +t If(x) - fh(X)1 dx

~OO .00

+ j ff(x + h) - fh(X + h)\ dx +J ffh(X) - fh(X +h)f dx
• 3h 3h

,00 .h

~ Kho + I I In(x + t)1 dt dx
• 3h ·0

.h .00 1
~ Kho +t dt t 2h If(x + t + h) - f(x + t - h)1 dx

1 1
~ Kho + h 2h w(2h) ~ Kho +2" w(2h);

i.e., for w we have

w(h) ~ Kho + iw(2h).

Iterating this k = [log2 l/h I times we get

(2.6)
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Now
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.2h .':L' • czI If(x)1 dx = I If(x)1 dx -I If(x + h)1 dx
. h . h . h

.oc':::;; I If(x)-f(x+h)ldx:::;;Kh",
• h

and adding these for h/2, h/4, etc., we get g If(x)1 dx:::;; Kh Q
, and together

with this also

.hI If(x) -f(x + h)1 dx:::;; Kh Q

•

·0

(2.8)

We obtain (2.2) by adding (2.7) and (2.8), and the proof is complete in
the case rp(x) = x.

Let us turn to Problem 1, to the weight rp(x) = x(l - x). Exactly as above
we get

and

.l-h .1(2 .I-h

I Ifh(X) - f(x)1 dx = I + I :::;; Kh Q

•

• h • h . 1;2

Now there is a point X o E (j, n(e.g., a Lebesgue-point of If I) for which

1 .Xo +h

h ! If(t)1 dt :::;; K
• Xn

(2.9)

is satisfied. With the functions (2.4) we have (letf(x) = °for x E 10, I))

.xoI (fh(X) - f(x» dx
. u

.00 .OC

= I feu - h + t) Xh(t) dt -I f(xo- h + t) Xh(t) dt
·0 ·0

•ex:-

= I f(u - h + t) Xh(t) dt + t"J(h),
• 0
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and since the left hand side is ('J(h U
), we obtain for h ~ ~ and 3h ~ u ~

1- 3h

I.(~) feu - h + t) Xh(t) dt I~ Kh U
•

Using this and (2.9) the proof can be completed as above.

3. PROOF OF THEOREM 2

For 0 < a < i and e < a2/4 let us consider the function (see Fig. 1)

fa .•(x) = 0 if Ix-al~e

=c2(x-a+e)2 if a - e < x ~ a - e/2
(3.1)

= i - e- 2(x - a)2 if a - e/2 < x ~ a +e/2

=e- 2(x-a-e)2 if a + e/2 < x ~ a + e.

Our counterexamples will be built up from the functions fa .• with suitable a's
and e's.

Let qJ I (x) = x. We shall use the following estimates in which K denotes
absolute constants.

1. For h* = elva we have

and

if x E (a - 3e, a + 3e), (3.2)

(3.3 )

1
2"

FIG. I. The function!a .•.
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In (3.3) use that A~.~(fa.,;x)~~ when xE([Hvh*z+4a+h*)]2,

IHvh*z + 4(a + f./2) + h*W), i.e., x - h* vx E (a, a + f./2), and

IHyfh*2 + 4(a + f./2) +h*W - IHyfh* + 4a + h*W ~ f./2.

2. Furthermore,

haf.l!P

IllfJfA~(fa.,)IILP(h.oc) ~ K aaf.l!p
aaf. l /p- 2h2

if a ~ h
if f. ~ h ~a
if 0 < h ~ f..

Indeed, the second estimate follows from the fact that A~(fa.,; x) = 0 if
I x - a I > h + f., and in the last line use If~.,(x)1 ~ 2f. - 2 (a.e.).

3. Moreover,

if f. ~h

if 0 < h ~ f..
(3.4 )

Here one has to use If~.,(x)1 ~ f. -I.

4. Let Faix) = g fa.,(t) dt. Clearly, IFa.,1 ~ f., hence we have the
estimates

o
IlfJf(x)A~(Fa.,;x)I~K f.lfJf(x)

aaf.- 1h2

if a + f. + h ~x
if f. ~h
if h ~ f..

(3.5)

I. We have a counterexample for Problem 4. Let n > 0 be an integer,
O I II' . b d - (n) - /2 i (. - I 2 )<a < 2' ", a sma positive num er, an ai - a i - a 1-, , ... , n .
Suppose", is so small that", < an/2 is satisfied.

Let f. i =", va; (i = 1,2,..., n) and

n

g(x) = g (x) = '\' J12a f. :-I/p/' (x).
n,a.'1 """"-" '/ 1 Jaj.6i

hi

Clearly,

(
a /a)

support g ~ r - ", \/ 2n ,a ,

and

n

II gn.a."IIu(o.oo) ~ I ", 2a
f.;-I/P Ilfai.,;llulo.oc.)

i~1

n
~ '\~ ", 2a f.;-I/Pf.!IP ~ n",2a ~ n2 -2an ~ K. (3.6)

i=1
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If 1] is sufficiently small, then a;+ 1 + 3e; + I <a; - 3e; (i = 1,..., n - I), and
in this case we get from point 1 above

Point 2 gives

(3.7)

Using this we show that for h >0

1] 2a ha ~ 1]ah Za

af1]Za
eia-Zh Z

if a; < h
if e; ~ h ~ a;
if O<h~e;.

n

11q>~A~(gn.a.,,)lb(h,OO) ~ L 1Iq>~A~(1]zaejl/Pfa, .•)lb(h.CG) ~ Kh Za . (3.8)
i~1

In fact, if h >e1 = 1] jQ;, then the sum in the middle of (3.8) is at most

n

K1]Za L af + Kn1] ahZa ~ K1]Zaaa +Kh Za ~ Kh Za .
i=1

If e; + I ~ h < e; (i = I,..., n - I), then the sum in question is at most

and we can argue similarly when h ~ en to deduce

n

11q>~A~(gn.a,,,)IIL'(h,oo) ~ K L eJa -zh z ~ Ke~a -2h z~ Kh Za .
j=l

Our next aim is to estimate IIAk(gn.a.,,)IIL'(O.OO)' For en ~ h we obtain from
point 3

n

IIAk(gn.a.,,)IIL.(O,OO) ~ L 1]Za e;-I/p IIAk(fa,.•)llu(h,OO)
;=1

~ Kn1]za ~ Kn1]a(en/va"r
~ K(n1]aa;;a/Z) ha ~ Kh a.

For h < en we have

n

II Ak(gn,a,,,)lIu(o,oo) ~K \' 1]za e j 1h ~K'1zae;;lh
;~I
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and this together with the previous estimate gives for all h >0

(3.9)

Let us now turn to the construction of the counterexample. Let (n p a p '7J
(i = 1,2,... ) be a sequence of triplets for which the above estimates hold (i.e.,
{'7d decreases sufficiently rapidly), and for which

ex
\--- n ~ 1/2p & n~a
....... 1 """":. 'f I

j=i+ I

(i = 1,2,... ).

Since g~{.ai' '1j is absolutely continuous, Ig;j.ai' '1jl ~ Kp and gnj.a,. '1j(x) = 0 for
x ~ a/2n- '7 Va/2n, there are constants Ai with

We may also suppose that

i-I

\--, A.n~'/2P~n~/2P
__ ) J I

j=l

Let now

(i = 2, 3,... ).

w

I(x) = "'" n ~ 1/2Pg (x)
....... I ";.Gj.Tlj'
;=1

where we may suppose (by appropriate choice of {(npai,'7J}~I) that if
(p;, q;) is the smallest interval which contains the support of gn,.a,. 'I, and
Pi = P; - 3'7i' qi = q; + 3'7i' then the inequalities qi + '7i Vii < P;_I and
q;+ I < Pi - '7i .;q; are satisfied for all i;;:: 2. This gives for x E (Pi' qJ

(3.10)

By (3.6) we have

00

1I/IILP(o.oo) ~ K 2..: ni-
1lP < 00.

i=1

i.e., I E U(O, (0). Now (3.8) and (3.9) give

ex

II a ,12(/)11 ./ K "'" -1/2Ph 2a ./ Kh 2a
({JILJh LP(h.oo) "::: ..... n i "::: ,

i= I

w

IILlk(f)IILP(o.oo) ~K 2..: nil/2Pha ~Kha.
;=1
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However, taking into account (3.2), (3.10), and (3.7), we obtain for h = 17i
(i ~ 2)

11,1~~J)IILP<h'.c())

~ 11,1 ~v;;1ni 1I2Pgn;.u,. 71)IILP<h'.<X"
i-I r:J)

(" ")11,12,.-----{ -1!2p )11
- \i':""1 + j=""i't I hyl",\nj gn,.u;.71j f.Plh'.x)

1 i-I OCJ

~_nII2Ph2a_\-'A.n:-1/2Ph2_K ,,--. II -ll2p II
~ 8 I "- J J ~ nj gnj.a j .71j LP(O.,x)

j=1 j~i+1

~~n!I2Ph2a_nl!2Ph2_K ~
~ 8 I , ­

j=i+ I

_ ~/2Ph2 _ K.,~a ~ _1_ n~i2Ph2a
n, 'II ~ 10 '

for sufficiently large i, i.e.,

II A~yI-;;(f)IILP(h2.cx:,) =1= 6'(h
2a

).

Thus, for our f, (1.11) is satisfied but (1.9) does not hold. This proves, by
Theorem E, that condition (1.11) is not sufficient for (1.8) to hold.

II. For Problem 2 one can argue as above with qJ(x) = x(l - x)
instead of qJl(X) = x. Clearly, x(l - x) and x behave similarly in the
neighborhoods of the origin (the factor (1 - x) does not play any role), thus
the considerations of point I above work also for qJ. The necessary changes
are obvious.

III. Since we proved above that condition (1. 7) is not sufficient for
(1.1), to disprove Conjecture 3 it is enough to show that (1.7) implies (1.4).
In fact,

.h

X j (I(x + t) - f(x - h + t» dt,
• (I

and so (1.7) gives

II(qJQ,1~(F»' Iblh.l-h)

< IlqJQ,1~(f)IILP(h.l-h) + h
a-

I II ( If(' + t) - f(· - h + t)1 dt'!
·0 [P(h.l-h)

.h

< Kh 2a +Kh a- I I IIf(· + t) - f(· - h + t)11u(h,l-h) dt
·0

.h

<Kh 2a +Kha- I I ha dt<Kh 2a ,
·0
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where we used that the LP-norm of an integral is not greater than the integral
of the corresponding norms (see [10, p. 271 l).

IV. Let us consider Conjecture 1. Here p = 1, and first we show that
for the function f given in II (see also I) we have

IqJa(x) Ll~(F; x)1 <; Kh Za (h <; x <; 1 - h), (3.11 )

where F(x) = g f(t) dt. Clearly, it is enough to prove the analoguous
relation for the function f constructed effectively from I.

By (3.5) we have (see I)

hence we obtain for ej + I < h <; ej and Gn.a.'1 = f~ gn.a.'1(t) dt (see also I)

II qJ~Ll ~(Gn,a''1)llc(h, 00)

n n i

<; K L rJZa(a/2j )a + K L rJ Zah" +K L eJa-Zh Z
j~j+l j~j+1 j~1

(take into account that ej = rJ Ya/21
). A similar estimate can be given for

h <; en' Furthermore for h ~ el' we have

n

II qJ~Ll~(Gn.a,'1)IIC<h,oo) <; KrJZa L (a/2 i
)" +KnrJZa h"

i~1

The above inequalities give

as was stated above.
Now F(x) =g f(t) dt is absolutely continuous; hence exactly as in III we

obtain from (1.7)

II qJaA~(F)IIBV(h, I-h) = II(qJaA~(F»' IlL I(h, I-h) <; Kh
Za

.

This and (3.11) show that for this f, (1.2) holds but (1.6) is not satisfied;
hence, by Theorem C, (1.2) is not a sufficient condition for (Ll).
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V. We disprove Conjecture 4 for a <! and p> 1. For the second
difference ,1: and for Q?(x) = x(1 - x) we have

(Q?" -I(X) ,1:(F; x))'

= (a - I) Q?" -2(x)(1 - 2x) ,1:(F; x)

+ Q?"-'(x)(F(x - (I - x)h) - F(x +hx))

+ Q?"-'(x)(xf(x - h(1 - x)) - f(x) + (I - x)f(x + hx))

+ Q?,,-I(X) h(xf(x - h(l - x)) + (1 - x)f(x + hx)).

Let us consider the functions fa .• from (3.1) (e <a2/4), and let Fa .•(x) =
f~ fa .•(t) dt, hi = 2ela. A simple calculation gives

II Q?" - 2,1:,(Fa.•)IILP(h t/(I +h,J.I/( 1+ h,))
~ Ka,,-2eh:/P~ Ka" -2-I/Pe l+ I/P,

1/ Q?"-'(F(. - (I - . ) hi) - F(. +hi .nIlU(h,/( I +h,), 1/(1 +h,))

~ Ka"-'eh:/P ~ Kaa-'-'/Pet+ I/P,

IIQ?"-'ht(·f(· - hl(1 - . )) + (I -. )f(· +hi' ))lIu(h,/(I+h,J.I/(I+h,ll

~Ka"-Ihlel/P~Ka"-2el+I/P,

with a c > 0 independent of a and e.
These imply

provided e is sufficiently small compared to a. At the same time we obtain
from (3.4) and (3.13) (see below)

1I,1~y';(fa.•)IILP(h2.1-h2J +h" 1I ,1 1(fa.•)IILP(o.,-h) ~ Ka"e I/p- 2"h2a

for every h > O.
Thus, putting

g (x)=a-"e2"-I/pr (x)a.£ Ja.£ ,

.x

Ga .•(x) = t ga)t) dt, hi = 2ela,
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II II -a 2a-llp II r II ~ -a 2a ~ Ja
ga,& LP(O,I,=a e Ja,& UIO,l)""a e "",a ,

(h > 0),

Let

oc

I(x) = '\' a~ 1- 2a )!2g ..(x).
~ I QI.e,
i=l

If the sequences {ad, led decrease sufficiently rapidly, then we get from
2a < 1 and from the previous estimates that/E LP(O, l),jsatisfies condition
(1.6) but it does not satisfy (1.5) (see also the argument of I above); hence.
by Theorem C, condition (1.5) is not necessary for (1.1).

VI. Concerning Conjecture 2, we shall show that for a function I
satisfying (1.6)

so that condition (1.3) is not necessary for (1.1). We follow the argument of
the previous point. With hI = 2ela we have a - e > al(l + hI)' so

(c> 0)

i.e.,

and we can argue as above in V (see the analogous inequality (3.12».

VII. Finally, let us show that condition (1.11) is not only not
sufficient but it is neither necessary for (1.8). The same argument shows that
(1.7) is not necessary for (1.1), and since II.1k(f)llu(o.l-h) <.Kh a is also
satisfied below, we obtain at the same time that neither (1.2) nor (1.4) is
necessary for (1.1) (see the argument of III above).
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The idea of point I was to keep the quotient eJva; fixed, where roughly
speaking,

has its maximum. Here we fix e around which the quotient

attains its maximum.
Thus, for n > 0, a > 0, /:; > 0, let

n

f, () - ,-' -a Za-lIP'/, ()
n.a,eX - ~ Q j G aj.6X'

i= I

(i = 1,2,..., n)

(the definition of fa .• was given In (3.1». For the functions fa .• a simple
calculation gives

\t;IIP if t;lva<.h
IILl~V;;(fa .•)IIu(h'.aJ) <. K IhZt; 1/p-2a if h < elva,

Ll~(fa .• ;x)=O if Ix-al~2e,

IlqJ~Ll~(fa)IILP(•. aJ) ~ caae!/P (c > 0).

Using these we show that

II Ll ~V;;(fn.a .•)IIu(h'.aJ) <. Kh
Za

,

In fact, for elva;:; <. h < elva; (i = 1, 2,..., n - 1)
n

IILl~v;;(fn.a .•)IILP(h2.aJ) <. '\' aj-aeZa-I/P Ilfaj .• IILP(h 2.OC)

j=l

n i

<. K L eZaaj-a + K L eZa - zaf -ah Z

j=i+1 j=l

(3.13 )

(3.14)

(3.15 )

and similar estimates hold for h~ el~ or h<. el..;a:,; furthermore, by
(3.4 )

n

'\' a-:-aeza-lh & K2naa-aeaha & Kh a
~ I ~ -...:::::

;=-1

if e <. h

if h <. e,
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provided e is so small that ea 2nalaO: < 1. On the other hand, (3.14) and
(3.15) give (we may assume ai - ai +I > 4e for i = 1,2,... , n - 1)

Using hese estimates the same method which was applied in 1 shows that
for an appropriate choice of n" a" ei the function

oc·

f(x)= ,\_.~ n-:- I / 2P I' (x)
I J ni'u;, &,

n~1

will satisfy (1.9) but not (1.11).
The proof is complete.
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